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Agenda of Systems Theory

e Models and their Structure
e Fundamental Limitations (Laws)

e Uncertainty and Robustnhess

Robustness of performance uncertainty

at different levels of granularity

e Interconnections, Architecture and

Algorithms

Architecture = organization of
distributed algorithms and their

implementation in hardware



Agenda of Systems Theory (cont.)

e Resource Management (Energy, Time,

Space, ...)

A broad vision of Systems Theory aids in
providing a unified conceptual framework
for problems in different fields (Control,
Communication, Signal Processing,

Operations Research)



e Structure

e Action

e and their Interaction



History of Science in the Sense of Kuhn:

Incommensurability

Thomas Kuhn in his book The Structure of
Scientific Revolutions distinguished between

Normal Science and Revolutionary Science.

Revolutionary Science (e.g., Quantum

Mechanics) arises when:

Existing Theories fail to explain

phenomena

A new “paradigm” is needed to reconcile

theory and experiment

With the new paradigm, a new language

IS needed



Something like that happened in the late
fifties and early sixties in the Systems and
Control field.

Earlier revolution (1948):
Shannon Information Theory and

Invention of the Transistor

“The Double Big Bang,” to quote Viterbi



I want to suggest that in the Systems and
Control field, there was a crisis in the field
in the fifties. Let me suggest as pointers

three manifestations of that crises.

1. Internal Stability: Feedback Control
Systems designed from an external
(input/output) point of view failed to
recognize the presence of these internal

instabilities.

2. The approach to design of
multi-input/multi-output systems was
essentially a reduction to a
single-input/single-output system

through a decoupling procedure.



3. The attempts to deal with the Wiener
filtering problem in the nonstationary
situation (Zadeh—Regazzini) leading to
some analog of the Wiener—Hopf
equation was not very successful (no
procedure analogous to Spectral

Factorization was available).

It is also worth mentioning that the
Mathematics that was prevalent in Linear
Systems Theory at the time was Complex

Function Theory and Transform T heory.



New Element

Computation and the Concept of a Solution

Solution not necessarily an analytical

expression

Theories leading to Algorithms



Advent of State Space Theory
(New Paradigm)

e New Language: Algebra, Differential

Equations
e Concept of State

e State Space Representation=

(92 = Fx(t) + Gu(t)

| y(t) = Hax(t)

u = input, x = state, y = output

Extends to time-varying and nonlinear

systems



Advent of State Space Theory

(New Paradigm cont.)

y(t) = He(t_tO)F:U(tO) + /tt He(t_S)FGu(s)ds
0

Reconciliation of Input-Output and Internal
(State) Point-of-view through introduction
of concepts of reachability (controllability)

and observability
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Natural Connection to Stability and Optimality

(Calculus of Variations)
Minimize
I(u,2) = [ M[(@(t), Qa(8)) + (u(®), Ru(®))]dt

Q>0 , R>O0

Behavior of optimal control
uw(t) = K@)x(t) as t1 — o©

Role of Controllability and Observability
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Deeper Aspects of Structure

Actions of semi-direct product
GL(n) x F x GL(m)
on (F,G) controllable
(F,G) — (T"Y(F + GK)T,GL)

Kronecker Invariants

Transporting the algebraic variety structure
of (F,G) to the quotient

Implications in System Identification
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How should we think about Graphs beyond
thinking about them as (V, E)?

How should we think about Systems of
Coupled Differential Equations evolving over
Graphs?

What are these invariants?

We should be able to distinguish between
differential equations evolving over trees
from differential equations evolving over

graphs with loops

We need Canonical Problems
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Pattern Recognition (Vision)
“Tranformation Group” acting on the space

of objects is not given but needs to be
identified!!

See the section on Pattern Recognition in

Minsky's paper:

“Steps Towards Artificial Intelligence,”
Proc. IEEE, 1961.
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Influence of Systems Theory
in Coding Theory
and
Signal Processing

(Intersection with Behavioral View of Systems: Willems)

Linear Systems taking values in Finite

Groups (Forney—Trott)

Minimality, Controllability and ODbservality,

Duality in Signal Processing

State Space Viewpoint: Influence on

Algorithms exploiting structure

Adaptive Filtering
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Filtering and Stochastic Control:

Separation Principle

(dX(t) = FX()dt+ Gu(t) + JdW (t)

dY(t) = Haz(t)d +dV(t)

Choose u(t) = ¢(IMY) to minimize

J(u,x) =
E| [ (X (0, QX (1)) + (u(®), Ru(e)]dt
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Solution

uw () = K@OX(@)
X(t) = E(X@)|F)

Separation into estimation and deterministic

control

e Infinite-time
(Controllability, Observability, Stability)

e Non-linear
Smoothing (Decoding)
Compute: P(Xs,tg < s < t1)|F7)
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Uncertainty and Robustness

Process and Measurement Uncertainty
VS.

Model Uncertainty

Approximation of Input-Output Maps
VS.
Approximation at the State Space

Representation

Two input-output maps may be close to
each other but the dimensions of their

corresponding state spaces may be far apart

(See: “The Legacy of George Zames,"
Mitter and Tannenbaum,

IEEE Trans. on Auto. Control)
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Fundamental Problem of Control: Design of
Control Systems whose performance is

robust against uncertainties

For linear time-invariant, bounded, causal
maps from L2(R) — L2(R), which, from the
Segal—Foures theorem, is in one-to-one
correspondence with operators which are

multiplication operators by H®-functions

Uncertainty in model represented by a ball
in H*

Feedback: reduction of complexity
Deep connections to Operator Theory, in

particular the work of Krein
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Recent work of Y.H. Kim:

Feedback Capacity of Stationary Gaussian
Channels

The computation of feedback capacity is
posed as an Infinite Dimensional Variational

Problem and uses Systems T heory for its
solution
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Interestingly, Keynes viewed the
representation of “uncertainty’” and how to
deal with uncertainty as one of the

fundamental problems of Macroeconomics

He also questioned the use of probability for
certain uncertain situations (prospect of a
European war is uncertain, the price of

copper, rate of interest twenty years hence)

Indeed, for systems which are
distributed, modeling and representation
of uncertainty remains a fundamental

Issue
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Bayesian Inference
and

Statistical Mechanics
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Some Connections between Information Theory, Filtering
and Statistical Mechanics

Variational Approach to Bayesian Estimation

Stochastic Control Interpretation of Nonlinear Filtering
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Preliminaries

X, Y discrete random variables with joint distribution Pxy

and marginals Px and Py

P
I(X;Y) = Ep,. (Iog b gyp ) . Mutual Information
X Y

Average measure of dependence of two random variables

Mutual Information is an example of the general notion of
relative entropy between two measures u and v on some

probability space (), F, P) (discrete for the moment)

h(ulv) = By log (g)
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Properties:

(i) h(plv) >0
(it) h(uly) = 0 & p = v
(iii) h(ulv) jointly convex in u,v

(But, not symmetric). Defines a pseudo-distance be-

tween two measures u and v.

We will have to deal with random variables in a more

general setting.
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Nonlinear Dynamical Systems
forced by (scaled) white noise

d .
% = b(xy) + o (z)iy

where v¢: Brownian motion and vy = white noise, formal

derivative of Brownian motion

Rewrite as Integral equation

t t .
T = I ——/O b(xs)ds ——/Oa(mt)vtdt
t t :
= xq ——/O b(xs)ds ——/O o(xy)dv <+ Ito integral
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We want to think of Ty = X as a map (random vari-
able) from (Q,F,P) to (X,B(X) where X = C(0,7;R)
and B(X) is the Borel field associated with X. We call
the probability measure of X € P(X) the path space

measure
A

Xt(')
W X is a random trajectory

T

Sometimes, we would want to look at these random tra-
jectories “through” a different measure P (instead of P)
in order for it to “appear’ differently, for example, tra-
jectories of Brownian Motion.
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Gibbs Measures:

Variational Characterization for Finite Systems

(H.O. Georgii: Gibbs Measures and Phase Transitions, Chapter 15)

Let S = finite set, and E = state space, finite set and
let O = E°, finite.
Let ® be any potential, and H = ) &4(w) be the
ACS

associated Hamiltonian
The unique Gibbs measure for @ is given by

v(w) = Z lexp[-H(w)], wen
where

Z = > exp[—H(w)] : Partition function
wesl)

28



For each probability measure u on (),

p(H) = > pw)H(w) and h(p) = — > p(w)log p(w)
wel) wel)

be the Energy and Entropy associated with u
Then
p(H) — h(p) + 109 Z = h(pulv) > 0
h(pulv) =0 u=v O]
F(u) =u(H) — h(n) : Free Energy

F(v)=—-logZz
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Generalization of these ideas to infinite systems leads to
characterization of translation-invariant Gibbs measures
as minimization of Specific Free Energy. A modification
of these ideas (using Exchangeability) leads to a proof

of the Noisy Channel Coding Theorem (BSC).

Variational Bayes and a Problem of Reliable Communication, Part II,

N. Newton, S.K. Mitter, to appear in J. Stat. Mech., 2012
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Information Theory, Filtering and Statistical Mechanics

(X¢)r>0 Markov Process, time homogeneous

P(X¢ € B|Xy,re|[0,s]) =n(t—s5,Xs5,B) 0<s<t<T

P; is the distribution of X; with density p;

P(B) = P(X; € B) = /Bpt(:v))\w(d:c) Az . ref. measure

Diffusion
(Ap)(x)

Xt

a

XO—I—/;b(XS)dt—I—/Ota(XS)de

/
o0

(bip)(z) on R
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Relative Entropy
h(pl\) = /X q(x) log q(z)\(dx) u has density q w.r.t. A
+o0o otherwise

(N = [ F@)A(dz)

>z. Statistical mechanics system, associated with (X¢);>0

P;: state of Y, at time ¢

Pgg: unique invariant measure with density pgg
Internal Energy Ex(P;) = (Hg, Pr)

Entropy Sz(F) = —h(F|Az)

Free Energy Fx(P) = Ex(P) — Sa(FPy)
Energy Function Hy(z) = —logpgg(x)
Choice assures Energy Function is a Gibbs measure for >,
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Proposition:

(i) Unique minimizer of Free Energy of ¥, is Pgg
(i) Fz(Pss) =0

(iii) Free Energy of X3 is non-increasing

Proof.

F(a)(P) = h(P|Psg) = (i) and (ii)
To prove (iii), Ps(t) two point joint distribution
P{P(B,C) = P(Xs € B,X; € C) = [, 7(t— s, X,C)Py(da)
P(%)SS = joint distribution when Ps = Pgg

Chain rule for Relative Entropy L]
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h(P§,%>|P.§,§,)SS)
= h(FP|Psg) + /h(ﬁ(t737$7 ss(t —s,x, -))Py(dx)
> h(Pt\PSS) (Chain Rule)

where TI(t,s,xz, -) = regular (X; = z)-conditional dis-
tribution for Xs under the joint distribution PS(,%) and
[Igq(t — s,z, -) is the equivalent under the joint distri-
bution Ps(,%,)ss-
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Y. one component of a two-component energy conserv-
iIng system that includes a unit temperature heat bath

with which )., interacts

If Entropy of system = Entropy of the sum of two com-
ponents then any change in this entropy resulting from
the evolution of P = neg. of corresponding change in
Fau(Py)

Pgg: unique invariant measure with density pgg

Proposition: Entropy of closed system is maximized by

Pgg and non-decreasing

Assertion (iii) in Proposition can be thought of as a Sec-

ond Law of Thermodynamics for >,
35



Observations (Interaction with Measurements)

Vi = [ g(Xs)ds + Wi

E [/Ot g(X)|%dt < oo

(Z¢t € [0,T]): regular conditional probability of X;
given (Y0 <s<t)

&+ density
&) = €o(x) + [ (A& (@)ds + [ €6(x) (g(2) — (9, Zs)'dvs

(1)
t .
v =Y — /o (g, Zs))ds Innovations
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We want to study the Information flow from the initial

state and running observations (Ys|0 < s < t) into the

regular conditional distribtution

Px,(vs,0<s<t) (+:9)
(the filter).

Is this flow, conservative, dissipative?
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Information Theoretic Quantities

S(t) =
C(t) =
D(t)

Proposition

S(t)
C(t)
D(%)

I((Xs,s €[0,T]); Ys,s € [0,t]) = supply
I((Xs,s €[t, T]); Ys,s € [0,t]) = storage
S(t) — C(t) = dissipation

= C(0) + 58 [ 19(X) — (g, Z5) 2ds
= I(Xy; Zt) = Eh(Z| Py)
= EI((Xs,s€[0,t]); Ys,s € [0,t]| X¢)
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1

S(t) = SElg(Xt) =g, Z)[? (2)
D(t) = E (Apt log pt — Al log &s) (X4) (3)
Dt §

Sensitivity of Mutual Information C(¢) to the randomiza-
tion in the dynamics of the signal

For Diffusions

D(t) = %EV log (&) aV log <£t> (X})

Dt Dbt

Rate of change of storage can be found by application
of Ito's rule to

&t 1og (&) (X¢)

bt
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Equations (2) and (3) show that the supply of informa-

tion is associated with the second integral in (1)

[ €s(@) (g () — (g, Z5))'dvs

and the dissipation associated with the first integral in (1)

o (A€ (2)ds

S*(t) — signal to noise power ratio of the observations

and D(t) = measure of the rate at which X forgets its past
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Notes on Proof:

C(t) = I(Xy;Ys;s €[0,t]) = I(Xy; Zy)
S(t) FE'log M; |,

where

dZo

My = G20 exo (] gCas) — (0,2 du

2 [ o) — (9, 2)Pds)

Interactive Statistical Mechanics

The conditional distribution Z; takes into account the
partial observations available up to time t. Define an
energy function for Ly, In such a way that Z; is the
minimum free-energy state at time ¢.
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Let (Z;) be a stochastic process that satisfies the filter
equation (Z; # Zgy) with density (&).

E¢&; corresponds to a state of ¥y and satisfies the Fokker—

Planck equation.

Define energy function

Hy7(z,t) = —log& ()

Ex1z(Z,t) = (Hxz(-,1), Zt)
Sx1z(Zt) = Sx(Zt) = —h(ZtI x)

Fx|1z(Ze,t) = Ex17(Zt,t) — Sx|7(Zt)
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Proposition
(i) Unique minimizer of the free energy of the conditional
system x| at time ¢ in the state Z;
(i) ]—“X|Z(Zt,t) =0Vt
(iii) If E]—“X|Z(Zt,t) < oo and h(®g|®g) < oo, where oy and
g are the distributions of Zg and Zg, then the Free
Energy of ¥y, as state Z; evolves in a positive (Ys, s €

[0,t]) supermartingale.

Item (iii) is like a Conditional Second Law.

We can study the statistical mechanics of the joint sys-
tem (X,Z). Connection to Bayesian Inference as Free-

Energy Minimization
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Data Assimilation = Path Estimation or Filtering
or Prediction

Nonlinear Filtering: The Innovations Viewpoint

Stochastic Partial Differential Equation for the Evolution
of the Conditional Density

The Variational Viewpoint:
Information-theoretic Interpretation

Connections to Stochastic Control

Non-equilibrium Statistical Mechanics
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Inference and Learning

Sanjoy K. Mitter

LLaboratory for Information and Decision Systems

Massachusetts Institute of Technology

Joint work with Charles Fefferman (Princeton),
Hariharan Narayanan (U Washington),
Nigel Newton (U Essex, UK)

DARPA Meeting at Johns Hopkins Applied Physics Lab
January 15, 2013



Bayesian Inference on Topological Structures

Abstract Framework
Prior Measures

Natural Observation Maps

Fitting Manifolds to Random Data
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Bayesian Inference & Free Energy Minimization

(Main reference: “A Variational Approach to Nonlinear
Estimation,” Mitter, S.K. and Newton, N.J. , Siam J. on
Control & Optimization, 42 2004.)
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Probability Measures on the Space
of Persistence Diagrams

(Yuriy Mileyko, Sayan Mukherjee, John Harer

Duke University, Mathematics, Statistical Science)
They prove:

T heorem
Space of Persistence Diagrams with the Wasserstein
metric is complete and separable. Allows us to do

Bayesian Inference on Space of Persistence Diagrams.

47



A Variational Formulation of Bayesian Estimation

Let (2, F,P) be a probability space, (X,X) and (Y,))
Borel spaces, and X : () —+ X and Y : {2 — Y measurable
mappings with distributions Py, Py and Pxy on &, )Y
and X x ), respectively. Suppose that:

(H1) there exists a o-finite (reference) measure, Ay, on Y
such that Pyy < Py ® A\y. (This could be Py itself.)

Let Q : X XY — [0,00) be a version of the associated
Radon-Nikodym derivative, and

Y = {y cY : :0< /XQ(:I:,y)PX(d:I:) < oo} ; (1)
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then YeY and Py (Y)=1. Let H: X XY — (—o0, +]
be defined by

H(z,y) = —109(Q(z,y)) ifyeY ()
0] otherwise :
then Pxy 1 & x Y — [0,1], defined by
exp(—H (z,y))Px(dx)
Pxy(A,y) = /A = (3)

J &xP(—H (w,4)) Px (dx)’

IS a regular conditional probability distribution for X given
Y: i.e.
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PX|Y(-,y) iS a probability measure on X for each v,
Pxy (A, -) is Y-measurable for each A, and
Eags. (1)—(3) constitute an ‘outcome-by-outcome’

abstract Bayes formula, vielding a posterior probability

distribution for X for each outcome of Y.
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Let P(X) be the set of probability measures on (X, X),
and H(X) the set of (—oo, +o0]-valued, measurable func-
tions on the same space. For Py,Py € P(X) and H €
H(X), we define

- dP _ _ _
h(Pyx | Px) = /Xlog (de> dPy if Py < Py and the integral exists
X
| (4)
o0 otherwise,
() = —log (/X exp(—ﬁ)de) if 0 < /X exp(—)dPy < oo
| (5)
— 00 otherwise,
(H,Py) = / HdPy if the integral exists
* (6)

00 otherwise.
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It is well known that the relative entropy h(Py | Px) can
be interpreted as the information gain of the probability
measure Py over Px. In fact, any version of —log(dPx /dPx)
IS a generalisation of the Shannon information for X. For
almost all x, it is a measure of the ‘relative degree of sur-
prise’ in the outcome X = x for the two distributions Py
and Py. Thus, h(Pyx|Px) is the average reduction in
the degree of surprise in this outcome arising from the
acceptance of Py as the distribution for X, rather than

s

Py.
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If we interpret exp(—H) as a likelihood function for X, as-
sociated with some (unspecified) observation, then H(x)
IS the ‘residual degree of surprise’ in that observation
if we already know that X = z, and i(H) is the ‘total
degree of surprise’ in that observation, i.e. the informa-
tion in the unspecified observation if all we know about
X is its prior Pyx. In what follows we shall call H(X)
the X-conditional information in the unspecified obser-
vation, and i(H) the information in that observation. (Of
course, H(X,y) and, respectively, i«(H(-,y)) are the X-
conditional information and, respectively, information in

the observation that ¥ = y.)
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Theorem 1

(i) i ((H(+,)) = minp, [h(Px|Px) + (H(-,y), Px)]
(i) h(Pxy (-, 9)|Px) = maxg {i(A) — (A, Pxy (-, )|
(i) Px)y(-,y) is the unique minimizer in (i)

(iv) If H* is a maximizer in (ii), then 3K € R s.t. H*(X) =
H(X,y) + K



Conceptualization
Information Processing over and above that in prior Py
In (i): Source of additional information is Y =y

Bayes Formula: Extracts info. pertinent h(PX|Y( -, Y)| Px)

and leaves residual (H, Px|y).

Input information is held in likelihood exp(—H(-,vy)) and

extracted information in PX|Y(-,y)
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Arbitrary Information procedure that postulates Px as
post-obs. distribution has access to additional informa-

tion. Hence: the notion Apparent Information.

In (ii): Source of additional information in Posterior Dis-
tribution PX|Y( -,y). The aim now is to postulate an ob-
servation, i.e. a likelihood function exp(—H) which gives

rise to this observation.
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Input Information

h(Pxpy (9P )

IS merged with the residual information of the postulated
observation

<ﬁ7PX|Y( ' 7y)>
Result > i(H)

With equality < Obs. Is compatible with Py y

Z(FI) - <FIaPX|Y(7y)>
— Inf. in Postulated Obs.
compatible with PX|Y( -, Y)

Compatible Inf. of exp(—H)
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High dimensional data

e Ehe marid fold structkare

al,

af the space al brain images

Gerber et

Number of dimensions is comparable or larger than number of samples

Curse

Sample complexity of function approximation can grow exponentially
Blessings

Concentration of measure

Asymptotic analysis

[David Donoho, AMS 2000]
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Manifold learning and manifold hypothesis

Manifold learning is a collection of methodologies for analyzing data

which are motivated by the manifold hypothesis:

high dimensional data tend to lie near a low dimensional manifold

The hypothesis is a way of avoiding the curse of dimensionality

[Kambhatla—-Leen’ 93, Tannenbaum et al’00, Roweis-—Saul’ 00,
Belkin-Niyogi’ 03, Donoho-Grimes’(04]



When is the Manifold Hypothesis true?

Geometry may be affected by the generative process,

and representation of data.

I will discuss one natural formulation of this question

and its statistical and algorithmic aspects.



Reach of a submanifold of R™

T is the largest number such that for any r < 7

any point at a distance r of M had a unique nearest point on M

Large reach 2 i Small reach



Low dimensional manifolds with bounded
volume and reach

Let G. = G.(d, V, ) be the family of

d—submanifolds of the unit ball in R"™, with

volume < V and reach > 7.



Testing the Manifold Hypothesis

Suppose P is an unknown probability distribution
supported in the unit ball in a separable Hilbert space,

and x1,x9, ... are i.i.d random samples from P

Given error €, dimension d, volume V', reach 7 and confidence 1 — ¢

is there an algorithm that takes a number of samples

depending on these parameters and outputs whether or not there is

M€ Ge =Ge(d,V,7)
such that w.p > 1—9, [d(M,z)?dP(z) < ¢ i



Sample Complexity of testing the manifold
hypothesis

What is the number of samples needed for testing

the hypothesis that data lie near a low dimensional manifold?

the sample complexity of the task depends only on

the intrinsic dimension, volume and reach, but

not ambient dimension



Sample complexity of testing the Manifold
Hypothesis

Loss
L(M,P) = expected squared distance of a random point to M
Empirical Loss

Given a set of data points z1, ..., 4
. Zi d(z;,M)?

5

Lem;&(M)

Sample Complexity

Smallest s such that 3 a rule A given zy, ...,z i.i.d from P,

P[L( My, P)— inf LM, P)>¢€<§



Empirical Risk Minimization

How large must s be to ensure

P [511;_0
Ge

Z?f:ldiMf"*‘-)g - L‘(M,’P)‘ & E] >1—-9

L(M,P)

M



Fitting manifolds

Theorem:
Let x1,...,zs be i.i.d samples from P, a distribution supported on the ball of
radius 1 in a separable Hilbert space. If

“o | log 1/5)

c(v+d)
g ,

then P [5111:} 2= dim"'"M}z — Epd(z, M)?

Ge

f:f] >1-—0.

Proof: Approximates manifolds using point clouds and uses the uniform bound
for k—means.



Algorithmic question

Given N points z1, ..., zx in the unit ball in R"
iS thﬂ]’ﬂ a l'Ilallif{}ld M E gf? =, gﬁ(d: CV: C_lT)
such that (—,ﬁ—) T d(ir--;_,M)z 2P ?

1<i<N

Here C' is some constant depending only on d.



Theorem
There is a controlled constant C' depending only on d and an Algorithm that
uses

n exp ((C?Vg(f_d?‘_d))H_ﬂ(l}) log 5

operations on real numbers such that given xy,...,zn5 € B,,, with probability
at least 1 — 4, the Algorithm outputs

1. “Yes” if there exists a manifold M € G.(d,V, T) such that

N

Z d(z, .ﬂ'\/I)“)3 < e,

g

2. “No” if there exists no manifold M’ € G.(d,CV,7/C) such that

N
Z d(z, M")? £ €k,

i=1



Outline

(1) Any manifold M € G, = G.(d,V,T)
is contained in a e— neighborhood of an affine subspace W of dimension

N, := Ny(e)

This allows us to reduce the ambient dimension n to roughly N,



Outline

(2) Reduce the problem to the question of testing
whether a discrete evenly spread set of points

lieon M€ G, =G.(d,V, 1)

(3) Find a smooth vector bundle D"
defined on a tubular

neighborhood of data.

(4) Describe a putative manifold M " as the set of zeroes of

a specific section of the vector bundle



Outline

(5) Restricting the base of D™ to M"* we get a bundle D™°"™,



Outline

(6) Obtain individual local sections by optimizing squared loss over a space
of second order (n — d—dimensional) jets satisfying Whitney’s inequalities cor-
responding to C*—norm of 7% over cylinders “aligned to the bundle”.



Outline

(7) Obtain a good section of D™°"™ by patching together good local sections
using a partition of unity supported on M**,




Outline

(7) Obtain a good section of D™°"™ by patching together good local sections
using a partition of unity supported on M*"*,




Outline

(7) Obtain a good section of D™°"™ by patching together good local sections
using a partition of unity supported on M*"*,




Concluding Remarks

* An algorithm for testing the manifold hypothesis.

* Improved sample complexity bounds for k-means.
Future directions:

(a) Make practical and test on real data

(b) Develop non-parametric versions for manifold fitting.

(c) Improve efficiency — better optimization over sections of a
vector bundle?

(d) Understand the role of topology in the optimization
questions involved .
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Towards a Unified View
of

Communication and Control

7



Feedback communication problem

7 | a=R0TY |, p(dbe|st, ar) b, | W=g0") .
i Fcoctl‘e- “|  Encoder > p(dsiia]se, ar, b) |  Decoder [~W
unctions ' Channel
by
1 Delay =

Figure 1. Interconnection

Choose encoder and decoder to transmit
message over the channel to minimize the
probability of error

Channel at time t: P(db:|a?,b?~1) stochastic kernel

a' = (ag, ..., at)

'
Channel = Sequence of P(dbt|at,bt_1)‘t_1
Time ordering: Message = W, Ay, By, ,Ap, Bp,W =

Decoded message

W = (1,2,..., M)
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Code function:

Fi = {ft : B! - A : measurable}
T
Fr = 1l #
t=1
Channel code function: f' = (f1,...,ft)

Distribution on code functions:
1T
P(dfel 71,4

Channel code = list of M channel code

functions

Code functions are introduced to reduce the
feedback communication problem to a no

feedback communication problem.
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Average Measure of Dependence

Mutual Information

P,r pr
(AT BTy = & | AD
(ATSET) = Bp, 00 ( o
P a1
B BT| A
EPATBT|09< BT>
T
1(AT; BY) = Y 1(Al; By B 1)
t=1

Information transmitted to the receiver
depends on future (Ay41,...,AT).

Directed Mutual Information (Causal)

T
I(AT - BT) = Y I1(A% By BT 1)
t=1
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To compute Mutual Information (Directed

Mutual Information), need joint distribution
P, gr(da’,db")

This can be done if we are given the channel
P(db|a’, b 1) _

and channel input distributions

D; = P(dat|a’ 1, bt_l)‘zzl

Interconnection of channel input to channel

Channel Capacity
1
Cr =sup—I(AT — B
Dr T
(Note: Optimization over original input

codes, not on space of code functions.)
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—————————————————————————————————————————

ch)je- ft—» ath FE) L p(dbe | a*, 0" 1) bt | W =g(t")
Functions : ncoder | Channel | : Decoder
Time 0 i i__________________i i Time T+ 1
i a= Delay = E
L——————————————————————_______???9}1_1¥1E

Figure 2: Markov Channels



Markov Channel

P(dsy41|st,at, bt) th1 . state transition

P(db¢|st, at) T:1 . channel output
Capacity of Markov Channels

(1) SDUOSTILmOO;I(AT%BT)

It turns out that by appropriately defining
sufficient statistics (7;) (conditional
distributions of the state given information
from encoder to decoder) and controls
ut(dat|m), and state Xy = (w1, Ap—1, Bi—1)
and instantaneous cost c(x¢, ut, up1), (1)
can be formulated as a Partially Observed

Stochastic Control Problem.
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In turn, this can be reformulated as a

fully-observable stochastic control problem.

This problem is more like a dual control
problem since the choice of the channel

input can help the decoder identify the

channel.
This is also an example where the

information pattern is nested: The encoder

has more information than the decoder.
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Communication
and

Control
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Stabilization equivalent to reliable

Communication through the loop

Signaling through the loop

Open Problem

Existence of Channel Linking

Controller and Actuator

Asymmetry in Information Transfer
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Problems for the Future

e Distributed Estimation and Control

Signalling: Controllers, Estimators have to
communicate their actions (estimates)
through the plant. There is a role for

Information Theory here.
(See recent work of Sahai on Witsenhausen problem)

See: Michael Spence (Nobel lecture)
Signalling in Retrospect and the Information
Structure of Markets

e Games as Multiple Feedback Loops

(Witsenhausen)

Related to Distributed Control
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Problems for the Future (cont.)

e Connections to Statistical Mechanics and
Field Theory

Information Theory of Message Passing

Algorithms

(See for example: Cramer’s Rule and Loop

Ensembles: A. Abdesselam and D.C. Brydges)

e Interconnections and Interactions

Optimal Transportation Theory

e \What is the Nature of Experimental Work

in our Field?

Theory vs. Experiment
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Problems for the Future (cont.)

e Systems View (Dynamical) of Economic

Classifying Equilibria

(See: Global Trade and Conflicting National
Interests: Ralph E. Gomory and William J. Baumol,

MIT)
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Concluding

Remarks
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