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Model predictive control (MPC)

Features

Very popular in process industry

Model-based

Easy to tune

Multi-input multi-output (MIMO)

Allows constraints on inputs and outputs

Adaptive / receding horizon

Uses off-line or on-line optimization
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MPC: Principle of operation

Performance/objective
function (e.g., reference
tracking versus
input energy)

Prediction model

Constraints

(On-line) optimization

Receding horizon

measurements

model

optimization

prediction

actions
control

objective,
constraints

system
inputs

control

MPC controller

Nonlinear optimization problem: min
uk

JMPC
k,Np

(uk)

subject to system dynamics, operational constraints
where uk = [uT(k) uT(k + 1) · · · uT(k + Np − 1)]T
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MPC: Receding horizon approach

k+Nck

computed control inputs

future

predicted outputs

k+1 k+Np

setpointpast

control horizon prediction horizon
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Challenges in control of large-scale networks

Large-scale nature of the system

Distributed vs centralized control

Optimality ↔ computational efficiency/tractability

Global ↔ local

Scalability

Communication requirements (bandwidth)

Robustness against failures
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Challenges in MPC of large-scale networks

Major problem for MPC in practice:
In general: nonlinear, nonconvex optimization problem
→ huge computation time, in particular for large-scale systems

Solutions:

Choice of the prediction model: accuracy versus
computational complexity

Use parametrized control laws

Use distributed and/or multi-level approach

Right optimization approach

parallel and/or distributed optimization
approximate original MPC optimization problem by another
optimization problem that can be solved efficiently

Include application-specific knowledge
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Distributed MPC

Subsystems instead of overall system
Single agent/controller for each subsystem

limited action capabilities
limited information gathering

Challenge: agents should choose local inputs that are
globally optimal

Ag3Ag1 Ag2 Ag4 Ag5

control agent

optimizer

control agent

optimizer

control agent

optimizer
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Distributed MPC

Interconnection between control agents

di

ui

vi

xi
yi

dj

uj

vj

xj
yj

win,ji

wout,ji win,ij

wout,ij

xi (k + 1) = fi (xi (k),ui (k),di (k), vi (k))
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Distributed MPC

Interconnection between control agents

di

ui

vi

xi
yi

dj

uj

vj

xj
yj

win,ji

wout,ji win,ij

wout,ij

xi (k + 1) = fi (xi (k),ui (k),di (k),win,j1i (k), . . . ,win,jmi
i (k))

wout,ji (k + 1) = hjiout(ui (k), yi (k), xi (k + 1)) for each neighbor j of i
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Local MPC control problem of agent i at decision step k

min
ũi (k),x̃i (k+1)

Jlocal,i (ũi (k), x̃i (k + 1))

subject to

subsystem dynamics: prediction model

xi (k + 1) = fi (xi (k),ui (k),di (k), . . .)win,j1i (k), . . . ,win,jmi
i (k)

wout,ji (k + 1)=h
ji
out(u

i
k , y

i
k , x

i
k+1) for each neighbor j of i

...

xi (k + N) = fi (xi (k + N − 1),ui (k + N − 1),di (k + N − 1), . . .)

w
j1i
in,k+N−1, . . . ,w

jmi
i

in,k+N−1

wout,ji (k + N)=h
ji
out(u

i
k+N−1, y

i
k+N−1, x

i
k+N)

initial local state, disturbances, and additional constraints
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Local MPC control problem of agent i at decision step k

min
ũi (k),x̃i (k+1)

Jlocal,i (ũi (k), x̃i (k + 1))

subject to

subsystem dynamics: prediction model

xi (k + 1) = fi (xi (k),ui (k),di (k),win,j1i (k), . . . ,win,jmi
i (k))

wout,ji (k + 1) = hout,ji (ui (k), yi (k), xi (k + 1)) for each neighbor j of i

...

xi (k + N) = fi (xi (k + N − 1),ui (k + N − 1),di (k + N − 1),

win,j1i (k + N − 1), . . . ,win,jmi
i (k + N − 1))

wout,ji (k + N) = hout,ji (ui (k + N − 1), yi (k + N − 1), xi (k + N))

initial local state, disturbances and additional constraints
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Interconnecting constraints

Constraints on interconnecting variables

Imposed by dynamics of overall network

What goes in into i equals

what goes out from j

Satisfaction necessary for accurate predictions
subnetwork i

subnetwork j1

subnetwork j2

win,ji (k) = wout,ij(k)

wout,ji (k) = win,ij(k)

...
...

win,ji (k + N − 1) = wout,ij(k + N − 1)

wout,ji (k + N − 1) = win,ij(k + N − 1)

For agent controlling subsystem i

win,ij and wout,ij of neighbor
j unknown

How to make accurate
predictions?
→ via negotiations
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Multiple-iterations scheme to agree on values of
interconnecting variables

Each agent
computes optimal local and interconnecting variables
communicates interconnecting variables to neighbors
updates parameters λ̃ji

in, λ̃
ji
out of additional cost term J iinter

Iterations continue until stopping criterion satisfied

Scheme converges to overall optimal solution under convexity
assumptions

min
ũi ,x̃i ,w̃in,li ,w̃out,li

Jlocal,i (ũi (k), x̃i (k + 1)) +
∑

j∈neighborsi

Jinter,i (w̃in,ji (k), w̃out,ji (k))

subject to

dynamics of subsystem i over the horizon

initial local state, disturbances, additional constraints
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Scheme based on augmented Lagrangian and block coordinate
descent + serial implementation

Additional objective function J
(s)
inter,i (w̃in,ji (k), w̃out,ji (k)) =

[
λ̃
(s)
in,ji (k)

−λ̃
(s)
out,ij(k)

]T [
w̃in,ji (k)
w̃out,ji (k)

]
+

γ

2

∥∥∥∥
[
w̃in,prev,ij(k)− w̃out,ji (k)
w̃out,prev,ij(k)− w̃in,ji (k)

]∥∥∥∥
2

2

,

where for each j that is a neighbor that solved its problem
before i in iteration s:

w̃in,prev,ij(k) = w̃
(s)
in,ij and w̃out,prev,ij(k) = w̃

(s)
out,ij

and where for each j that has not solved its problem in
iteration s yet

w̃in,prev,ij(k) = w̃
(s−1)
in,ij and w̃out,prev,ij(k) = w̃

(s−1)
out,ij
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Multiple-iterations scheme (continued)

Update of λ̃in,ji :

λ̃
(s+1)
in,ji (k) = λ̃

(s)
in,ji + γ

(
w̃

(s)
in,ji (k)− w̃

(s)
out,ij(k)

)

Alternative: auxiliary problem principle with parallel
implementation
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Multiple-iterations scheme

Main problem with augmented Lagrangian approach + family:

convergence + convergence speed
feasibility issues in case of finite termination
extension to for nonlinear, nonconvex case

Ongoing research in field is still very active and also explores
alternative approaches:

agent-based coordination & consensus methods
game-based methods
swarm intelligence methods
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Cooperative water control
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Cooperative water control
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Cooperative water control

Cooperation to

improve performance
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Irrigation canals

Irrigation accounts for
about 70% of global fresh
water usage

Irrigation canals should
deliver water at the right
time to the right location

Components:

control structures

off-takes

canal reaches

water users
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Irrigation canals – Case study

Case study: West-M canal, south of Phoenix, Arizona, 10 km long

reach 1

reach 2

reach 3

reach 4

reach 5

reach 6

reach 7

reach 8

controller 1

controller 2

Adjust gates to maintain water levels, while satisfying demand and
actuator constraints.
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Dynamics of a canal reach

qin,r

qout,r

dg,r

dg,r+1

canal reach r

qin,ext,r

qout,ext,r
hr

hr−1
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Dynamics of a canal reach

Various ways to model canal reach: from accurate and slow to
approximate and fast

Saint Venant equations

∂Q

∂x
+

∂A

∂t
= qlat

∂Q

∂t
+

∂

∂x

(
Q

A

)2

+ gA
∂h

∂x
+

gQ|Q|

C 2RA
= 0

with Q flow, A cross-section area, qlat lateral inflow, h water
height
→ system of nonlinear differential equations

Discretization of Saint Venant equations in time and space
→ system of nonlinear difference equations
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Dynamics of a canal reach

Various ways to model canal reach: from accurate and slow to
approximate and fast

Saint Venant equations → system of nonlinear differential
equations

Discretization of Saint Venant equations in time and space
→ system of nonlinear difference equations

Linearization
→ system of linear difference equations

If spatial discretization step is equal to reach length, we get
simple time-delay equation:
inflow of reach influences water height at end after given
constant delay
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Dynamics of a canal reach

hr (k + 1) = hr (k) +
Tc

cr
qin,r (k − kd,r )−

Tc

cr
qout,r (k) +

Tc

cr
qext,in,r (k)−

Tc

cr
qext,out,r (k)

qin,r (k) = qin,r (k − 1) + Ce,r∆hr−1(k) + Cu,r∆dg,r (k)

qout,r (k) = qout,r (k − 1) + Ce,r+1∆hr (k) + Cu,r+1∆dg,r+1(k)

with constant

Ce,r =
gcw,rWs,rµrdg,r√

2g(hr−1 − (zs,r + µrdg,r ))

Cu,r = cw,rWs,rµr

√
2g(hr−1 − (zs,r + µrdg,r ))

−
gcw,rWs,rµ

2
r dg,r√

2g(hr−1 − (zs,r + µrdg,r ))
,

where h, d are given linearization points
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Control of an irrigation canal

Control objectives

Minimize deviations of water levels from set-points

Minimize changes in gate positions

Jlocal,i =

Np−1∑

l=0

∑

r∈Ri

(
αr (hr (k + 1 + l)− hr ,ref)

2
+ βr (dg,r (k + l)− dg,r (k + l − 1))

2
)

Constraints

maximum on the change in the gate position, both upwards
and downwards

gate position should always be positive

gate should not be lifted out of the water
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Setup

Implementation

Nonlinear, validated model of the canal implemented in
SOBEK
MPC controllers with linearized models implemented in Matlab
Optimization using CPLEX v10.0 through Tomlab 5.7 interface

Parameters

Tc = 120 s, N = 30 steps
Distributed MPC scheme parameters: γ = 1000, ε = 1.10−4

Cost coefficients: αr = 0.15, βr = 0.0075

Scenario

8 hour simulation
at t = 2: increase of 0.1 m3/s in offtake of reach 3
at t = 4: decrease of 0.1 m3/s in offtake of reach 3
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Evolution of control actions over the full simulation
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Evolution of water levels over the full simulation
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Evolution of absolute error over the iterations at t = 2.23
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Dutch river system
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Dutch river system

Control of the Rijnmond area
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Dutch river system

Control of the Rijnmond area

Maintain water levels in cities by controlling gates, subject to
tidal sea water level, varying river inflows, safety and actuator
constraints

Discrete (actuators) + continuous dynamics (partial differential
equations)
→ hybrid MPC approach using mixed-integer nonlinear optimization
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Time instant optimization MPC

Consider discrete on-off or open-closed actuator

Two approaches to model control signal:

discrete-valued signal defined at each time step

... k+N

u(k+N−1)u(k)

k+1k

u(k+1)

→ mixed integer optimization problem (often linear)
with N binary variables per actuator
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Time instant optimization MPC

Consider discrete on-off or open-closed actuator

Two approaches to model control signal:

discrete-valued signal: N binary variables
different parametrization: time instant optimization
assume limited number (M) of on-off switches

t tttoff,1 on,1 off,2 on,2 t

→ real-valued nonlinear optimization problem
with 2M real-valued variables per actuator

Especially if horizon N is large, time instant optimization
offers significant computational savings
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Hierarchical MPC of water distribution canals

NGate

PI N

Rearch N

h1

h2

Outflow

hN

Head gate

(source)

Centralized MPC controller

Reach 1

Reach 2

Gate 1

PI 1 Gate 2

PI 2

Local PI controllers: 1 for each reach, controls water level by
raising or lowering gate
Set-points of local PI controllers as well as head gate are
controlled by MPC controller
Advantage:

robust control solution due to decentralized fast PI controllers
coordination via MPC controller (at slower time scale)
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Multi-level control of large-scale networks

Challenges in control of large-scale networks:

Large-scale networks

Distributed vs centralized control

Optimality ↔ computational
efficiency/tractability

Global ↔ local

Scalability, communication requirements (bandwidth)

Robustness against failures

→ multi-level multi-agent approach
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Multi-level multi-agent control

Multi-level control with intelligent control agents &
coordination

Time-based and space-based separation into layers

supervisor supervisor

control agent control agent
control agent

control agent
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Multi-level multi-agent control

Multi-level control with intelligent control agents &
coordination

Time-based and space-based separation into layers

small area

supervisor supervisor

control
agent agent

control
agent

control

high−level supervisor
slow dynamics

large area

fast dynamics
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Multi-level control framework

Lowest level:

local control agents
“fast” control
small region
operational control

Higher levels:

supervisors
“slower” control
larger regions
operational, tactical, strategic control

Multi-level, multi-objective control structure

Coordination at and across all levels

Combine with MPC
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Main issues and topics in multi-level MPC

How to obtain tractable prediction models?

What is the best division into subnetworks?

Selection of static/dynamic region boundaries?

How to determine subgoals so as to optimize overall goal?

How should the higher-level control layers be designed?

How to effectuate interaction and coordination between
agents and control regions?

How to resolve conflicts & prevent counteracting?

How can existing approaches be extended to hybrid systems?

How can the computation/iteration time be reduced?
(algorithms, properties, approximations, reductions, . . . )

Analysis (stability, reliability, robustness, . . . )
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Need for traffic control

Traffic jams & congestion

cause time losses, extra costs,
more incidents
have negative impact on economy,
environment, society

Several ways to reduce traffic jams and to improve traffic
performance:

new infrastructure, missing links
pricing
modal shift
better use of available capacity through
intelligent traffic control
→ model predictive traffic control
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Traffic management using MPC

Make use of roadside intelligence
→ traffic control center +

current infrastructure

Control measures: variable speed limits,
ramp metering, traffic signals, lane
closures, shoulder lane openings, tidal
flow, . . .

Also include “soft” control measures:
dynamic route information, travel time
information, . . .

Performance criteria: total time spent,
fuel consumption, emissions, . . .
→ consider weighted sum
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Traffic models

Two main classes of traffic models:

Microscopic models → individual vehicles

Macroscopic models → aggregated variables
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Microscopic traffic flow models

Consider individual vehicles

Car following + lane changing + overtaking models

Different driver classes (with different parameters settings)

Simulation rather time-consuming for large networks
→ less suited as prediction model for MPC
→ better suited as simulation/validation model
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Macroscopic traffic flow models

Work with aggregated variables (average speed, density, flow)

Examples:

fluid-like models: Lighthill-Whitham-Richards (LWR), Payne,
METANET, . . .
gas-kinetic models: Helbing model, . . .

Trade-off between computational speed and accuracy

→ well suited as prediction model for MPC

→ less suited as simulation/validation model

In this lecture we use the macroscopic model METANET as
prediction model for MPC
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METANET

Developed by Papageorgiou & Messmer
+ various extensions by Hegyi & De Schutter

Network represented by directed graph

highway stretch with uniform characteristics → link
divided into N segments of length L

on-ramp, off-ramp, change in geometry → node

traffic flow
freeway link m

. . .. . .segment 1 segment i segment N
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METANET

λ

L

vi

ρi

qi

i i + 1i − 1

Density (conservation of vehicles):

ρi (k + 1) = ρi (k) +
T

Lλ

(
qi−1(k)− qi (k)

)

Flow:
qi (k) = ρi (k) vi (k)λ
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METANET

Speed (relaxation + convection + anticipation):

vi (k + 1) = vi (k) +
T

τ

(
V
(
ρi (k)

)
− vi (k)

)

+
T

L
vi (k)

(
vi−1(k)− vi (k)

)

−
νT

τL

ρi+1(k)− ρi (k)

ρi (k) + κ
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METANET

Desired speed (cf. fundamental diagram):

V
(
ρi (k)

)
= vf exp

[
−
1

a

(
ρi (k)

ρcr

)a ]
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METANET: Extensions

Effect of speed limit:

V
(
ρi (k)

)
= min

(
(1 + α) vcontrol,i (k)

︸ ︷︷ ︸
speed limit

, vf exp

[
−
1

a

(
ρi (k)

ρcr

)a]

︸ ︷︷ ︸
desired speed

)

α: non-compliance

Mainstream origin (vs on-ramp)

Different reaction to higher vs lower downstream density
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Shock waves in traffic flows

“Moving” zones of traffic congestion
arise due to bottlenecks, incidents, sudden braking, . . .
move upstream with approx. 15 km/h

Cause extra travel time + unsafe situations

Solution: impose variable speed limits upstream of shock wave

→ reduce inflow of congested area
such that traffic congestion dissolves/attenuates

→ create low density wave that propagates downstream
+ compensates (high density) show wave
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Variable speed limits

Goal: suppress/reduce effects of shock waves

Prevent occurrence of new waves + negative impacts at
other locations

Requires coordination, prediction and optimization:

local control versus network control
take effects at other locations + future time instants
into account
(feedback) control
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Variable speed limits for reduction of shock waves

60 70 80

1 km

3850 veh/h

demand

travel direction

segments 1−5: uncontrolled

5 6 111 ... ... shockwave12

segments 6−11: controlled uncontrolled

Set-up:

12 km freeway stretch, 12 segments of 1 km

first 5 and last segment uncontrolled

segment 6 up to 11: variable speed limits

min. speed limit: 50 km/h

max. speed limit difference: 10 km/h
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Variable speed limits for reduction of shock waves

Shock wave enters freeway stretch (downstream density scenario)
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No control → shock wave travels through entire stretch
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Control (MPC) → shock wave disappears
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Conventional versus parametrized MPC

Conventional MPC

Optimizes control inputs

min
u

J(u)

Parametrized MPC

Optimizes parameter θ

min
θ

J
(
u(θ)

)
with u = f (θ, x)

Effect: trade efficiency for optimality

Note: for previous case study: much faster (up to 75-80%)
than conventional MPC while yielding comparable
performance
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Parametrized MPC

Disturbance Measurement

Control law

Control law

Parameters

Par
ame

ters

Optimization

Prediction

Control

Control

inputs

inputs

System

Model

Objective,
Constraints

Define parametrization of
control inputs

u = f (θ, x)

such that #(θ) ≤ #(u)

Control time steps can
also be different
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Parametrized MPC

Due to state dependency of
control law, control signal can
still vary over full prediction
horizon

By introducing control horizon
Nc or blocking, the number of
optimization parameters can be
reduced

kc kc + 2 kc + Nc − 1 kc + Np − 1

Control input

Control horizon
Prediction horizon

Current state
State

PAST FUTURE

Parameter

Lucca, July 5, 2013 Control of large-scale transportation systems 57 / 85



MPC Distributed MPC MPC for water networks Multi-level MPC Road networks Summary

Parametrized variable speed limits

80 80 70 70 9090

Traffic

vm,1(k)

ρm,1(k)

vm,i (k)

ρm,i (k)

vm,i+1(k)

ρm,i+1(k)

vm,N(k)

ρm,N(k)

. . .
. . .

. . .
. . .

Lm

uvsl,m,i (kc) uvsl,m,i+1(kc)

uvsl,m,i (kc + 1) = θ0,mvfree,m+θ1,m
vm,i+1(kc)− vm,i (kc)

vm,i+1(kc) + κv

+ θ2,m
ρm,i+1(kc)− ρm,i (kc)

ρm,i+1(kc) + κρ
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Parametrized on-ramp metering

Link µ Link m

qµ,Nµ−1(k) qµ,Nµ
(k) qm,1(k)vm,1(k)

ρm,1(k)
qo(k)

Flow

Flow

ur,m,i (kc + 1) = ur,m,i (kc) + θ3,m
ρcr,m − ρm,i (kc)

ρcr,m

cf. ALINEA: r(k + 1) = r(k) + KR [ô − oout(k)]

Lucca, July 5, 2013 Control of large-scale transportation systems 59 / 85



MPC Distributed MPC MPC for water networks Multi-level MPC Road networks Summary

Multi-level traffic control

Stretch controller Corridor controller

Supraregional controller

Traffic signal controllerDynamic speed limitRamp meter controller

Regional controller

Area controller

Regional controller

Area controller
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Multi-level traffic control

Traffic signals, ramp metering: basic controllers (PID, logic)

Freeway stretches, corridors: MPC → coordination +
set-points for lower-level controllers

Area controllers: MPC → routing

Regional controllers: MPC → high-level routing

MPC for stretches, corridors, areas, and regions:

→ medium-sized problems due to temporal & spatial division
→ still tractable

Coordination (top-down) via performance criterion or
constraints
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Area controllers

Aim: Route guidance (via tolling, dynamic route information
panels, . . . )

Traffic network is represented by graph with nodes and links

Due to computational complexity, optimal route choice
control done via flows on links

Optimal route guidance: in general, nonlinear integer
optimization with high computational requirements →
intractable

Fast approach using Mixed-Integer Linear Programming (MILP)

transform nonlinear problem into system of linear equations
using binary variables
can be solved efficiently using branch-and-bound; several
efficient commercial and freeware solvers available
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MILP approach – General set-up

Only consider flows and queue lengths

Each link has maximal allowed capacity constraint

Piecewise constant time-varying demand - [kTs, (k + 1)Ts) for
k = 0, . . . ,K − 1 with K (simulation horizon)

...

...

Do,d

t0 KTsTs 2Ts (K − 2)Ts (K − 1)Ts

Do,d(0)

Do,d(1)
Do,d(K − 2)

Do,d(K − 1)

Main goal: assign optimal flows xl ,o,d(k) to each link l
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MILP approach – Model

Inflow at origin:

∑

l∈Louto ∩Lo,d

xl ,o,d(k) 6 Do,d(k) +
qo,d(k)

Ts
for each d ∈ D

Outflow from origin to destination:

F out
o,d (k) =

∑

l∈Louto ∩Lo,d

xl ,o,d(k)

Assume constant delay κ between beginning and end of link

Queue behavior at origin: Total demand − outflow
i.e., Do,d(k)− F out

o,d (k) in time interval [kTs, (k + 1)Ts)

qo,d(k + 1) = max
(
0, qo,d(k) + (Do,d(k)− F out

o,d (k))Ts

)
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MILP approach – Equivalences

P1: [f (x) 6 0] ⇐⇒ [δ = 1] is true if and only if
{
f (x) 6 M(1− δ)

f (x) > ε+ (m − ε)δ

P2: y = δf (x) is equivalent to





y 6 Mδ

y > mδ

y 6 f (x)−m(1− δ)

y > f (x)−M(1− δ)

f function with upper and lower bounds M and m

δ is a binary variable

y is a real-valued scalar variable

ε is a small tolerance (machine precision)

→ transform max equations into MILP equations
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MILP approach – Transforming the queue model

qo,d(k + 1) = max
(
0, qo,d(k) + (Do,d(k)− F out

o,d (k))Ts

)

Define

[ δo,d(k) = 1 ] ⇐⇒ [ qo,d(k) + (Do,d(k)− F out
o,d (k))Ts > 0 ]

Can be transformed into MILP equations using equivalence P1

qo,d(k + 1) = δo,d(k)
(
qo,d(k) + (Do,d(k)− F out

o,d (k))Ts︸ ︷︷ ︸
f (linear)

)

= zo,d(k)

Product between δo,d(k) and f can be transformed into system of
MILP equations using equivalence P2

Queue model → system of MILP equations
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MILP approach – Objective function for queues

Original objective function: time spent in queues
(linear/quadratic):

queuequeue

lengthlength

timetime

Approximated objective function (linear):

queuequeue

lengthlength

timetime
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MILP approach – Objective Functions

Time spent in links:

Jlinks =

Kend−1∑

k=0

∑

(o,d)∈O×D

∑

l∈Lo,d

xl ,o,d(k)κlT
2
s

Time spent in queues:

Jqueue =

Kend−1∑

k=0

∑

(o,d)∈O×D

1

2
(qo,d(k) + qo,d(k + 1))Ts
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MILP approach – Overall area control problems

Nonlinear optimization problem:

min
(
TTS links + TTS queues)

subject to
nonlinear model
operational constraints

MILP optimization problem:

min
(
TTS links + T̂TS queues)

subject to
MILP model
operational constraints
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MILP approach – Case study – Set-up

l1

l2

l3

l4

l5 l6
o1

d1

d2

v1

v2

v3

Dynamic demand case with queues only at origins of network

Period (min) 0–10 10–30 30–40 40–60

Do1,d1 (veh/h) 5000 8000 2500 0
Do1,d2 (veh/h) 1000 2000 1000 0
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MILP approach – Case study – Set-up

l1

l2

l3

l4

l5 l6
o1

d1

d2

v1

v2

v3

Scenario:
simulation period: 60 min, sampling time: 1 min

capacities:C1=1900 veh/h, C2=2000 veh/h, C3=1800 veh/h,
C4=1600 veh/h, C5=1000 veh/h, and C6=1000 veh/h

delay factor: κ1=10, κ2=9, κ3=6, κ4=7, κ5=2, and κ6=2
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MILP approach – Case study – Results

Case TTStot improvement CPU time
(veh.h) (s)

No control 1434 0% –
MILP 1081 24.6% 0.27
SQP (5 initial points) 1067 25.6% 90.0
SQP (50 initial points) 1064 25.8% 983
SQP (with MILP solution

as initial point)
1064 25.8% 1.29
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Regional controllers

Control collection of areas

Aim: Determine optimal flows of vehicles between areas

Model: Aggregate model – Macroscopic Fundamental
Diagram (MFD)

Optimization: Nonlinear nonconvex programming problem
→ will be approximated using MILP
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Macroscopic Fundamental Diagram (MFD)

Introduced by Geroliminis and
Daganzo

Describes relation between
space-mean flow and density
in neighborhood-sized sections
of cities (up to 10 km2)

Macroscopic fundamental
diagram is independent of the
demand

Outflow of area is proportional
to space-mean flow within area

[veh/h]

[veh/km]ρ

q

Congested

Critical

Free−flow
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Flow control between areas

Represent traffic network by graph

links correspond to areas, with inflow qin,a(k), outflow
qout,a(k), and density ρa(k)

nodes correspond to connections between areas,
external origins (with inflow qorig,o(k)), or
external exits (with outflow qexit,e(k))
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Model for regional controllers

Network MFD results in static description of form

qout,a(k) = Ma(ρa(k))

Evolution of densities inside each area is described using
simple conservation equation:

ρa(k + 1) = ρa(k) +
T

La
(qin,a(k)− qout,a(k))

with T sample time step system and La measure for total
length of highways and roads in area a

For every node ν balance between inflows and outflows:
∑

a∈Iν

qout,a(k) +
∑

o∈Iorig,ν

qorig,o(k) =

∑

a∈Oν

qin,a(k) +
∑

e∈Oexit,ν

qexit,e(k)
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MPC for regional controllers

Try to keep density in each region below critical density ρcrit,a:

Jpen(k) =

Np∑

j=1

∑

a

[
max(0, ρa(k + j)− ρcrit,a)

]2

Also minimize total time spent (TTS) by all vehicles in region:

JTTS(k) =

Np∑

j=1

∑

a

Laρa(k + j)T

Total objective function:

J(k) = Jpen(k) + γJTTS(k)

Constraints on maximal flows from one area to another,. . .

Results in nonlinear, nonconvex optimization problem
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Mixed integer linear programming (MILP) – Equivalences

P1: [f (x) 6 0] ⇐⇒ [δ = 1] is true if and only if
{
f (x) 6 M(1− δ)

f (x) > ε+ (m − ε)δ

P2: y = δf (x) is equivalent to





y 6 Mδ

y > mδ

y 6 f (x)−m(1− δ)

y > f (x)−M(1− δ)

f function with upper and lower bounds M and m

δ is a binary variable

y is a real-valued scalar variable

ε is a small tolerance (machine precision)
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Transformation into MILP problem

Approximate MFD by piecewise affine function

qout,a(k) = αa,iρa(k) + βa,i if ρa(k) ∈ [ρa,i , ρa,i+1]

[veh/h]

[veh/km]ρ

q

PWA
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Transformation into MILP problem

Approximate MFD by piecewise affine function

qout,a(k) = αa,iρa(k) + βa,i if ρa(k) ∈ [ρa,i , ρa,i+1]

Introduce binary variables δa,i (k) such that

δa,i (k) = 1 if and only if ρa(k) ≤ ρa,i+1

Can be transformed into MILP equations using equivalence P1

Now we have

qout,a(k) =

Na∑

i=1

(
(αa,i − αa,i−1)ρa(k) + (βa,i − βa,i−1)

)
δa,i (k)

Introduce real-valued auxiliary variables ya,i (k) = ρa(k)δa,i (k)
Can be transformed into MILP equations using equivalence P2
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Transformation into MILP problem

Results in

qout,a(k) =

Na∑

i=1

(αa,i − αa,i−1)ya,i (k) + (βa,i − βa,i−1)δa,i (k)

If we combine all equations and inequalities, we obtain a
system of mixed-integer linear inequalities
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Transformation into MILP problem

Recall

Jpen(k) =
∑

j

∑

a

[
max(0, ρa(k + j)− ρcrit,a)

]2
→ not linear

JTTS(k) =
∑

j

∑

a

Laρa(k + j)T → linear!

Removing square in Jpen(k) results in piecewise affine
objective function
Can be transformed in MILP equations using P1 & P2

Hence, we get MILP problem

Solution of MILP problem can be directly applied or it can be
used as good initial starting point for original nonlinear,
nonconvex MPC optimization problem

Lucca, July 5, 2013 Control of large-scale transportation systems 81 / 85



MPC Distributed MPC MPC for water networks Multi-level MPC Road networks Summary

Related work: Intelligent Vehicle Highway Systems (IVHS)

Integrate various in-vehicle and roadside-based traffic control
measures that support platoons of fully autonomous vehicles

platoon

dynamic route guidance

cooperative adaptive cruise control

intelligent speed adaptation

Goal: improved traffic performance (safety, throughput,
environment, . . . ) + constraints (robustness, reliability, . . . )
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A multi-scale HD-MPC approach for IVHS

→ multi-level multi-layer control approach (∼ California PATH)

Area controller Area controller

Roadside controller Roadside controller

Platoon controller Platoon controller

Vehicle controllerVehicle controller

Regional controller

Supraregional controller

Regional controller
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Cooperative Vehicle Infrastructure Systems

Intermediate step between current system and IVHS
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Summary

Model predictive control for large-scale systems → main issue:
computational complexity

Dealing with computational issues:

trade-off between accuracy and efficiency
use of macroscopic models
parametrized controllers
approximations
distributed control
multi-level control

Applications: water distribution networks and road networks

For more information: also see website of EU project
HD-MPC (Hierarchical and Distributed MPC):
http://www.ict-hd-mpc.eu
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